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ABSTRACT: Snowpack provides the majority of predictive information for water supply forecasts (WSFs) in snow-
dominated basins across the western United States. Drought conditions typically accompany decreased snowpack and low-
ered runoff efficiency, negatively impacting WSFs. Here, we investigate the relationship between snow water equivalent
(SWE) and April–July streamflow volume (AMJJ-V) during drought in small headwater catchments, using observations
from 31 USGS streamflow gauges and 54 SNOTEL stations. A linear regression approach is used to evaluate forecast skill
under different historical climatologies used for model fitting, as well as with different forecast dates. Experiments are con-
structed in which extreme hydrological drought years are withheld from model training, that is, years with AMJJ-V below
the 15th percentile. Subsets of the remaining years are used for model fitting to understand how the climatology of differ-
ent training subsets impacts forecasts of extreme drought years. We generally report overprediction in drought years. How-
ever, training the forecast model on drier years, that is, below-median years (P15, P57.5], minimizes residuals by an average
of 10% in drought year forecasts, relative to a baseline case, with the highest median skill obtained in mid- to late April for
colder regions. We report similar findings using a modified National Resources Conservation Service (NRCS) procedure in
nine large Upper Colorado River basin (UCRB) basins, highlighting the importance of the snowpack–streamflow relation-
ship in streamflow predictability. We propose an “adaptive sampling” approach of dynamically selecting training years
based on antecedent SWE conditions, showing error reductions of up to 20% in historical drought years relative to the pe-
riod of record. These alternate training protocols provide opportunities for addressing the challenges of future drought risk
to water supply planning.

SIGNIFICANCE STATEMENT: Seasonal water supply forecasts based on the relationship between peak snowpack
and water supply exhibit unique errors in drought years due to low snow and streamflow variability, presenting a major
challenge for water supply prediction. Here, we assess the reliability of snow-based streamflow predictability in drought
years using a fixed forecast date or fixed model training period. We critically evaluate different training protocols that
evaluate predictive performance and identify sources of error during historical drought years. We also propose and test
an “adaptive sampling” application that dynamically selects training years based on antecedent SWE conditions provid-
ing to overcome persistent errors and provide new insights and strategies for snow-guided forecasts.

KEYWORDS: Streamflow; Drought; Snowpack; Seasonal forecasting; Statistical forecasting

1. Introduction

In mountainous regions of the western United States, the
majority of annual runoff originates as snowmelt, despite only
an estimated 37% of precipitation falling as snow (Palmer
1988; Doesken and Judson 1996; Daly et al. 2000; Li et al.
2017). Water supply forecasts (WSFs; Garen 1992) predict
seasonal streamflow volume to support a broad array of

natural resource decisions (Pagano et al. 2004). The recurring
cycle of snowpack accumulating in colder months and subse-
quent snowmelt producing streamflow has been one of the
fundamental relationships facilitating WSFs. However, in re-
cent decades, warmer climate across the western United
States has been accompanied by declines in mountain snow-
pack (Barnett et al. 2005; Mote et al. 2018) and increased in-
terannual streamflow variability (Pagano and Garen 2005;
Abatzoglou et al. 2014). These changes have exacerbated
forecast errors and have challenged assumptions of stationar-
ity that underpin contemporary operational WSFs (Sturtevant
and Harpold 2019). While it has been established that climate
warming will impact WSFs in general (He et al. 2016) and cat-
egorical drought prediction in particular (Livneh and Badger
2020), quantifying the sensitivity of historic forecast skill at
different forecast dates is arguably most valuable for water
management during drought years when allocation shortfalls
may occur. This assessment is crucial given the elevated need
for reliable water supply information during drought to

Denotes content that is immediately available upon publica-
tion as open access.

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/JHM-D-21-
0229.s1.

Corresponding author: Parthkumar Modi, parthkumar.modi@
colorado.edu

DOI: 10.1175/JHM-D-21-0229.1

Ó 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

MOD I E T A L . 1607OCTOBER 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:04 PM UTC

https://doi.org/10.1175/JHM-D-21-0229.s1
https://doi.org/10.1175/JHM-D-21-0229.s1
mailto:parthkumar.modi@colorado.edu
mailto:parthkumar.modi@colorado.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


support municipal, agricultural, industrial water supply plan-
ning, trade, and power generation (Suhr Pierce et al. 2010).
The goal of this paper is to critically evaluate snow-based
seasonal water supply prediction during drought, to identify
persistent sources of errors and opportunities to improve
predictions using alternative training protocols during the
forecast season.

Increased interannual variability in the classic snowpack–-
streamflow relationship is expected to continue during current
and future drought years due to recently documented changes
in the underlying physical mechanisms. Declines in the moun-
tain snowpack (Barnett et al. 2005; Mote et al. 2005, 2018), re-
sulting from increasing snow-to-rain transitions (Lute et al.
2015) and shifts in the timing of snow ablation (Kapnick and
Hall 2012), have caused slower snowmelt rates (Musselman
et al. 2017 2021) and earlier snowmelt (Dettinger and Cayan
1995; Stewart et al. 2004) for at least the past five decades.
These changes, attributable to widespread changes in temper-
ature and precipitation (Cubasch et al. 2001; Hamlet et al.
2005; Serreze et al. 1999), are expected to continue impacting
water supplies across the western United States. Further, per-
sistent dry states partially attributable to climate warming
have already manifested during the early years of the twenty-
first century (MacDonald et al. 2008; Williams et al. 2020).
Overall declines in seasonal streamflow volume have been ac-
companied by lowered runoff efficiency (Nowak et al. 2012;
Woodhouse et al. 2016) and increased winter snowmelt
(Pagano et al. 2004). All these factors combined present a
major challenge ahead for the WSF forecast skill for current
and future drought prediction (He et al. 2016; Livneh and
Badger 2020).

WSFs can be broadly classified into three categories: statis-
tical, dynamical, and hybrid. Statistical WSFs include regression-
based and data-driven models that rely on empirical relationships.
Dynamical WSFs encompass process-based models that repre-
sent the underlying physics. Hybrid WSFs consist of multimo-
del combinations such as coupling of statistical and dynamical
techniques. All WSFs ultimately rely on two sources of pre-
dictability: initial hydrologic conditions (IHCs) obtained from
a range of in situ observations or remote sensing data products
like that of snow, meteorological conditions; and gauged
streamflow, and seasonal climate forecasts that provide the
estimates of seasonal conditions ahead of time. In regions
across the West, most predictive information is still derived
from knowledge of snowpack conditions (Fleming and Good-
body 2019; Koster et al. 2010; Pagano 2010; Wood et al. 2016)
and hence snow water equivalent (SWE), around the date of
peak SWE, is considered to be a skillful predictor for WSFs
(Pagano et al. 2004). Statistical WSFs have conventionally re-
lied on IHCs that include SWE and accumulated precipitation
as well as the occasional use of additional predictors like ante-
cedent streamflow and soil moisture. However, recent use of
climate indices (Robertson and Wang 2012) and seasonal
climate forecast information (Lehner et al. 2017; Slater and
Villarini 2018) have helped to mitigate the impacts of climate
nonstationarity on streamflow predictability by accounting for
ongoing influences of ocean–atmosphere oscillations. They
are typically issued by the National Resources Conservation

Service (NRCS) and are well established using linear (Garen
1992) and multivariate regression approaches (Koster et al.
2010; Lehner et al. 2017). Commonly used advanced statistical
(or machine learning) WSFs like artificial neural networks
(Kişi 2007) or support vector machines (Asefa et al. 2006;
Guo et al. 2011) have thus far seen application primarily
within research-based contexts (Fleming and Goodbody
2019). Nevertheless, recent demonstrations of improved physi-
cal interpretability (Fleming et al. 2021b; McGovern et al.
2019; Reichstein et al. 2019), increasingly better performance
(Kratzert et al. 2019; Nearing et al. 2021), and the develop-
ment of the NRCS next-generation WSF system [multimodel
machine-learning metasystem (M4); Fleming and Goodbody
2019; Fleming et al. 2021a], make advanced statistical frame-
works a viable contender to contemporary WSFs within the
near future. Major strengths of statistical WSFs are data-
driven modeling, straightforward interpretability, and low
computational requirements (Pagano et al. 2009). However,
they pose drawbacks including limitations in observational
data availability for certain regions and time periods, lack of
explicit physical consideration, and an inability to account for
water inputs after the forecast date.

Dynamical and hybrid approaches involve the use of physics-
based models (Day and Asce 1985) and rely on both IHCs
and seasonal climate forecast for predictive skill (Wood et al.
2016). Both dynamical (Day and Asce 1985; Werner et al.
2004; Wood and Schaake 2008) and hybrid approaches
(Robertson et al. 2013; Slater and Villarini 2018) have been
developed to address the regression-based limitations posing
different degrees of algorithmic complexity and data require-
ments. Major strengths of these approaches include a contin-
uous generation of plausible future streamflow states and in
principle a more physically consistent sensitivity to nonsta-
tionary conditions on the basis of model representations of
physical process. However, these approaches can present
considerable complexity in identifying model parameters and
may further necessitate computationally intensive and poten-
tially poorly constrained calibration. In cases where physics-
based models perform poorly, embedding machine learning
or advanced statistical techniques may allow for better pre-
dictions than purely process-driven approaches (Fisher and
Koven 2020). Overall, skill from seasonal climate forecast in-
formation is currently limited compared to that obtained
from IHCs, particularly in snow-dominated settings, such as
those presented in his study (Wood et al. 2016).

Regardless of the approach used, the IHCs play a substantial
role in the forecast skill of the WSFs (Shukla and Lettenmaier
2011; Wood et al. 2016), particularly across the snow-dominated
regions in the West where they provide the majority of predic-
tive information. For example, the NRCS snow-based statistical
WSFs have been a widely used tool for streamflow forecast
information. They are based on a variety of regression ap-
proaches [Z-score regression, principal component regression
(PCR)] that isolate the contribution of IHCs and minimize the
influence of overfitting from predictor’s collinearity (Pagano
et al. 2009). The dependency of such WSFs on IHCs raises two
questions. First is whether using common fixed-date forecasts,
for example, initialized on 1 April, provides the maximum
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predictive skill, and second, is whether overall forecast perfor-
mance in drought years is comparable to normal, nondrought
years. Historically, 1 April has been associated with peak SWE
conditions and has been considered to provide maximum pre-
dictive information (Pagano et al. 2004). Despite the contempo-
rary forecast skill of 1 April SWE, peak SWE has been
projected to occur closer to 1 March for 62% of snow-
dominated regions by the end of the century, driven largely by
climate warming (Livneh and Badger 2020). In addition, long-
term historical trends indicate higher geographical variability in
peak SWE around 1 April and a substantial increase in snow-
melt before 1 April at 42% of stations across the western
United States (Musselman et al. 2021). Hence, reductions in
1 April snowpack conditions during drought would portend
lower predictive skill of seasonal streamflow volume. As a re-
sult, the addition of ancillary nonsnow predictors like precipita-
tion and soil moisture and an earlier surrogate for peak SWE,
such as 1 March SWE, are anticipated to mitigate the reduction
in SWE-based predictability in future drought years (Koster
et al. 2010; Livneh and Badger 2020; Pagano et al. 2009).

Recent studies (He et al. 2016; Livneh and Badger 2020;
Sturtevant and Harpold 2019) have largely attributed reduced
predictability in drought years from snowpack to the interan-
nual variability in the snowpack–streamflow relationship (Lehner
et al. 2017). Drought years are typically accompanied by below-
average snowpack conditions and lowered runoff efficiency.
Hence, assessing the reliability of snow-based statistical WSFs on
a fixed forecast date or training models on predetermined histori-
cal years may be insufficient to capture the full potential predict-
ability in drought years. Instead, evaluation of predictive skill at
different forecast dates as well as quantifying the influence of
training on different historical years (i.e., climatological stratifica-
tion) is warranted to tackle potential issues of statistical WSFs.
Although climatological stratification is not a complex concept,
studies such as McInerney et al. (2021), have shown that climato-
logical stratification (based on flow) improves the reliability of
subseasonal forecasts of high and low flows. Nevertheless, to our
knowledge, no systematic analysis into the impact of climatologi-
cal stratification on streamflow predictability has been published,
at least across the snow-dominated basins in the western United
States, possibly due to data availability for training forecast mod-
els (e.g., Llewellyn et al. 2018).

Given the above challenges, we conduct a critical evalua-
tion of the snowpack–streamflow relationship during his-
torical drought years to understand changes in predictive
performance as a result of both the forecast date, as well
as the historical training years selected. Improvements to
WSFs have been documented through key methodological
developments. For example, Sturtevant and Harpold (2019)
show that systematic overprediction of seasonal streamflow
volumes from statistical WSFs in drought years can be par-
tially addressed using a nonlinear transformation of predictor
variables. Other studies have reported improvements to statis-
tical forecasts through the addition of nonsnow predictors (He
et al. 2016; Lehner et al. 2017; Livneh and Badger 2020), hy-
brid statistical–dynamical approaches (Robertson and Wang
2012; Slater and Villarini 2018), and the development of modu-
lar frameworks (Fleming et al. 2021a). As a point of departure

from these developments in statistical WSFs, the novelty of
this study is first an assessment of the influence of different
historical IHCs in training models to make predictions in
drought years and second in investigating the evolution of
predictive skill at different forecast dates. Motivated by opera-
tional methods used by the NRCS, we use a linear regression ap-
proach to model the relationship between SWE and April–July
streamflow volume in small headwater catchments, seeking a
simple model structure with the least number of parameters. We
organize past years’ April–July streamflow volumes on the basis
of their historical percentiles in order to create different subsets
of historical IHCs for training the model. The primary drought
forecast experiments are designed akin to an imposed nonsta-
tionarity, where the most extreme historical drought years, that
is, where the April–July streamflow volume is below the 15th
percentile (P15) of the historical record, are withheld from the
training period. This is done in order to evaluate the utility of
different snowpack–streamflow training approaches to capture
“unprecedented drought” conditions. Each forecast experi-
ment evaluates predictive skill throughout the entire forecast
season beginning on 1 January, allowing us to quantify the sen-
sitivity of skill to different forecast dates. We also explore these
forecast experiments in large Upper Colorado River basin
(UCRB) basins using a modified NRCS standard procedure as
an independent case study. Finally, we explore the potential
for a guided stratification of training years based on antecedent
SWE conditions to make predictions in drought years, while
exploring the implications of this approach for normal and wet
years.

2. Methods

We first introduce the statistical model that predicts stream-
flow based upon snowpack information in small headwater
catchments (section 2a). Percentile thresholds of April–July
streamflow are used to create different subsets of training years
[section 2a(1)], from which a set of forecast experiments are de-
veloped to evaluate the impact of different training years on
forecast skill in small headwater catchments [section 2a(2)].
These forecast experiments are also assessed over case study’s
large basins whose streamflow forecasting procedure is sepa-
rately detailed in section 2a(3). In section 2b, an “adaptive
sampling” application is described, which explores the potential
improved forecast skill through a guided stratification of training
years based on antecedent SWE conditions. A description of all
skill metrics and the statistical test is provided in section 2c,
while data sources and screening procedures are detailed in
section 2d.

a. Experimental design

Given the significant contribution of snowmelt to total run-
off in snow-dominated basins (Li et al. 2017), we conduct a
series of forecast experiments [section 2a(2)] for selected
Snowpack Telemetry (SNOTEL) stations and their corre-
sponding U.S. Geological Survey (USGS) stream gauges
(Fig. 1), in which snowpack is exclusively used to predict
streamflow in order to isolate snowpack predictive skill di-
rectly. We fit a simple linear model with SWE as a predictor
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and April–July streamflow volume (AMJJ-V) as a predictand
and is given in Eq. (1) as

Q � aiSWEi 1 bi, (1)

where Q is the warm season streamflow volume (AMJJ-V),
i represents the SWE at a given date (for instance, 1 April),
and a and b are the model coefficients. The linear model uses
ordinary least squares (OLS) regression rather than the similar
approaches (principal component regression or z-score regres-
sion) employed by NRCS (Garen 1992) due to the use of a
single explanatory variable}SWE, providing deterministic
predictions for a given forecast date. We chose a simple linear
regression model, in particular, to isolate the predictive value
of snowpack and minimize the influence of model parameteri-
zation on the forecast errors. Though such a model is easily in-
terpretable and requires minimal computing requirements, it is
not ideal when there are data limitations or an emergent physi-
cal process that modifies the relationship between predictors
and predictand. These cases may necessitate the addition of
new observational data as predictors, predictor/predictand trans-
formation, or leveraging information from physically based
dynamical models}all of which require careful consideration
before operational implementation (Pagano et al. 2009).

1) FLOW-BASED CLIMATOLOGICAL STRATIFICATION

Transforming meteorological and hydrological conditions such
as precipitation, streamflow, soil moisture, reservoir storage, and

groundwater levels into percentiles can be a useful, nonparamet-
ric way to categorize drought conditions (Steinemann et al.
2015). The U.S. Drought Monitor (USDM) classifies hydrologi-
cal drought into five major categories using streamflow percentile
thresholds, that is, streamflow below these thresholds, including
abnormally dry (D0}P30), moderate drought (D1}P20), severe
drought (D2}P10), extreme drought (D3}P5), and exceptional
drought (D4}P2), from the least intense to the most intense
(Svoboda et al. 2002). Here, we analyze hydrological drought
where the AMJJ-V is below the 15th percentile (P15) of the his-
torical record. We withhold drought years [P0, P15] from the his-
torical record, that is, years available between 1985 and 2020
water years (WY), of AMJJ-V observations and create a subset
of years with the rest [i.e., nondrought years; (P15, P100]] to
evaluate the impact of different subsets of training years on
the forecast skill during withheld drought years. By withhold-
ing drought years, we are effectively assessing predictive skill
in unprecedented drought conditions, akin to an imposed
nonstationarity.

The historical years are stratified into three categories using
percentile thresholds of historical AMJJ-V observations (Fig. 2b):
“drought” [P0, P15]}years withheld for evaluation representing
a set of extremely dry years, “below median” (P15, P57.5]}years
with percentiles lower than the new shifted median (i.e., P57.5%)
of the remaining nondrought years, and “above median”
(P57.5, P100]}years with percentiles above the new shifted me-
dian. These subsets were independently derived for each selected
basin using their corresponding stream gauge observations.

FIG. 1. (a) A map of the study domain, comprising 31 drainage basins and 54 SNOTEL stations across the western United States col-
ored by the ratio of 1 Apr SWE/P, (b) SWE/P plotted against elevation illustrating an overall increase in the fraction of snow with eleva-
tion, (c) histogram of the SWE/P, and (d) basin size from selected SNOTEL stations and USGS stream gauges, respectively. A description
of the data is provided in section 2d.
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Figure 3 indicates locally chosen withheld drought years (red
filled boxes) in addition to wet [P85, P100] and nonextreme years
(P15, P85) for each SWE observation station between 1985 and
2020WY and primarily represents the spatial variability in histor-
ical drought years across the study domain.

2) FORECAST EXPERIMENTS

A set of four forecast experiments were designed to evalu-
ate the impact of different training subsets on the forecast
skill and in particular, to evaluate the robustness of WSFs in
drought years when trained on different sets of historical
years. Four forecast experiments, with different training and
evaluation subsets (Fig. 4a), were performed separately for
each of the selected 54 SNOTEL observation sites and their
corresponding 31 USGS streamflow gauges (full details re-
garding the observational data and screening procedure is
provided in section 2d). We pair SWE at each SNOTEL site
with total basin AMJJ-V in order to evaluate the unique

relationship that governs snowpack evolution with water sup-
ply. In sum, forecast experiments were performed both in a
one-on-one fashion as well as using the NRCS approach that
averages SWE from all sites within and adjacent to the basin.
We perform daily forecasts starting from 1 January through
15 May for each of the experiments using daily SWE and
AMJJ-V observations. We choose this time horizon to accom-
modate the regional differences in the timing of peak SWE
(Musselman et al. 2021) and commensurate with the NRCS
procedure of issuing forecasts beginning in January (Pagano
et al. 2009).

The “conventional” experiment in Fig. 4a follows the prac-
tice of training forecast models on long-term historical condi-
tions (usually period of record). Here, the model is trained on
the full set of nondrought years and evaluated on withheld
drought years. Instead of using the long-term historical condi-
tions predeterminedly, we design a climate-state-based exper-
iment, known as “selective,” where the model is trained on
below-median years, that is, years exhibiting relatively dry

FIG. 2. Example of the experimental design: (a) Time series of 1 Apr SWE (dotted line with “x” markers) and
AMJJ-V (solid circles) for 36 historical years. (b) Percentiles based on AMJJ-V are calculated from which three sub-
sets are shown}drought years [P0, P15]; below-median years (P15, P57.5], and above-median years (P57.5, P100].
Below-median and above-median are collectively known as nondrought years (P15, P100]. Data are plotted from
SNOTEL Butte, CO (380), and USGS East River at Almont, CO (09112500), from 1985 to 2020 water years. Historical
data features and screening procedures are described in section 2d.
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conditions and evaluated on withheld drought years. To inves-
tigate the sensitivity of the “selective” experiment to the
range of chosen years, we conduct a separate experiment us-
ing four different training subsets: (P30, P62.5], (P25, P57.5],
(P20, P52.5], and (P15, P47.5], spanning wetter to drier condi-
tions with respect to withheld drought years.

The statistical model, when both trained and evaluated on
the same set of years, that is, nondrought years (P15, P100], is
expected to reflect the maximum predictive ability of the ob-
servations themselves and is referred to as an “overfit” experi-
ment. As a result, it creates a benchmark of forecast skill for
all designed experiments. Finally, with the “underfit” experi-
ment, a trade-off scenario is portrayed where the forecast skill
in nondrought years is evaluated from the model trained on
below-median years. The forecast experiments are illustrated
for a representative site along with its corresponding snowpack–
streamflow relationship (Fig. 4b). In Fig. 4b, we also illustrate
slope in withheld drought years, based on a linear fit between

SWE and AMJJ-V. We acknowledge that a linear fit on small
sample size (here n = 6) is not ideal and may produce biased
regression estimates. The sequence of steps associated with
the forecast experiments is demonstrated in the top workflow
(Fig. 5).

Years in training and evaluation set are chosen indepen-
dently, that is, we assume a stateless case and therefore are
not examining the impact of sequential dependent events, for
example, a multiyear drought event on the forecast skill. As a
result, forecast skill generated from these experiments can be
attributed to the time-independent snowpack–streamflow re-
lationship alone. In a separate experiment, we also compare
these forecast experiments by easing the restriction of with-
held drought years in training; to represent a de facto scenario
assuming that such drought events have occurred in the past.
The two training subsets, in this case, include the period of re-
cord and actual below-median years [P0, P50] instead of non-
drought and shifted below-median years, respectively.

FIG. 3. Annual matrix showing locally chosen drought [P0, P15], nonextreme (P15, P85), and wet [P85, P100] years for
each SNOTEL station. The orange rectangular boxes on the left indicate the state locations of the SNOTEL sites.
The gray matrix elements refer to the unavailability of either the SNOTEL SWE or the corresponding stream gauge
observations for the marked year.
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3) CASE STUDY ON NINE LARGE UCRB BASINS:
STREAMFLOW FORECASTING PROCEDURE

For greater relevance and to draw more generalizable find-
ings of our work, we perform a case study focusing on nine
large UCRB basins where we employ a modified NRCS stan-
dard WSF procedure. We compare the forecast skill from the
conventional and selective forecast experiments in the with-
held drought years by mimicking the operational NRCS fore-
cast procedure of using a PCR. We train PCR on predictors
from SNOTEL and naturalized streamflow data from the

U.S. Bureau of Reclamation. SNOTEL predictors of SWE
and accumulated precipitation are transformed into stan-
dardized anomalies (i.e., subtraction of mean and division by
standard deviation based on the training years), and AMJJ
streamflow volume is seminormalized via a square root trans-
formation (Lehner et al. 2017; Garen 1992). However, a
modification to the NRCS procedure is undertaken relating
to the process of retaining principal components. While the
NRCS procedure (now as NRCS PCR) uses a significance
and sign test on regression coefficients to retain the number

FIG. 4. Design of forecast experiments: (a) Training and evaluation subsets for four forecast experiments where “conventional” and
“selective” are evaluated on withheld drought years and trained on nondrought and below-median years, respectively, and “overfit” and
“underfit” are evaluated on nondrought years and trained on nondrought and below-median, respectively. (b) Representative site illus-
trating the snowpack–streamflow relationship showing the training and evaluation subsets, relative to the withheld drought years. Data
are plotted from SNOTEL Indian Creek, WY (544), and USGS Hams Fork Below Pole Creek, near Frontier, WY (09223000).

FIG. 5. Workflow demonstrating the sequence of steps in the (top) forecast experiments and (bottom) adaptive sampling.
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of principal components via an iterative process, due to the de-
sign of the forecast experiments in our study, a cross-validation
approach is used here to retain the principal components (now
as CV PCR). Specifically, a tenfold cross validation, that is, a
“test” of model on 10 different samples, calculates the model
skill score using the mean-squared error, with the addition of
the principal component one at a time. The number of princi-
pal component/s corresponding to the best model skill score
are retained. To evaluate whether the modified method, that
is, CV PCR, is consistent with the NRCS PCR, we conduct an
additional analysis that compares leave-one-out (or jackknife
resampling) errors between the NRCS PCR and CV PCR
trained on period of record as well as CV PCR trained on con-
ventional (P15, P100] and selective [P0, P15] years.

b. Adaptive sampling}Selection of training years using
antecedent SWE conditions

As an application of the above experiments, we explore the
potential for a guided sampling of training years based on ante-
cedent SWE conditions. For a given forecast date, we obtain
the SWE conditions on that date and compute the percentile
based on the historical SWE record at the calendar date. We
create training subsets by selecting years that fall within a range
of 610 percentile points around the computed percentile. A
range of 610 was chosen to maximize the representativeness
of SWE states on the sampling of years and satisfy enough data
points for training the model. For instance, if the estimated
SWE percentile on a given forecast date is 25, then years be-
tween the 15th and 35th percentile of AMJJ-V are chosen for
training. In the case when the estimated percentile is below 10
or above 90, the years below 20th and above 80th percentile
are selected for training. All available years except the evalua-
tion year are included in training the model at a given forecast
date. The sequence of steps associated with the adaptive sam-
pling is demonstrated in the bottom workflow (Fig. 5).

c. Metrics and statistical testing

Residuals are estimated to determine the model’s predic-
tive ability that can be examined through their magnitude and
direction. Residuals (e) are expressed as a percentage of the
observed median in Eq. (2) as

ei �
(simi 2 obsi)
median(obs) , (2)

where sim and obs represent model simulations and observations,
respectively, and i = 1, 2, 3, … , n, with n being the total number
of years in evaluation. We use the normalized root-mean-square
error (NRMSE; %) to analyze the predictive skill from the fore-
cast experiments against the corresponding streamflow observa-
tions. The normalization of root-mean-square error facilitates
comparison across different forecast models and is useful for
benchmarking (Hyndman and Koehler 2006). It is expressed as
a percentage and shown in Eq. (3) as

NRMSE � RMSE

obs
�

��������������������������
1
n

∑n
i�1

(simi 2 obsi)2
√

obs
3 100(%), (3)

where obs represents mean of observations. A one-sided
Wilcoxon signed-rank test is also conducted to determine
whether two training models, when evaluated on a similar set
of years, have a comparable forecast skill (NRMSE). The
nonparametric hypothesis test was chosen over a parametric
Student’s paired t test as it performs well with nonnormally
distributed data. Statistical significance was reported at the
95% confidence level (a = 0.05).

In an exploratory analysis, we also assess the relative spread
of 1 April SWE and AMJJ-V in historical drought years
[P0, P15] as compared to nondrought years (P15, P100] using
the robust relative dispersion metric, the coefficient of median
absolute deviation (CMAD). CMAD is resistant to outliers
and compares variability reasonably well among different cate-
gories of nonnormal distributions (Arachchige et al. 2020).
The CMAD here is defined in Eq. (4) and is represented as

CMAD � med|xi 2 m|
m

, (4)

where “med” denotes the median, m is the median estimate
of sample x, and i = 1, 2, 3, … , n with n being the total num-
ber of years.

d. Observational datasets and screening procedure

Daily SWE observations from the Natural Resource Con-
servation Service’s SNOTEL network and the cumulative sea-
sonal streamflow volume (April–July) estimates from daily
USGS National Water Information System (NWIS) data
were obtained for SNOTEL sites marked with pins and
USGS streamflow gauges corresponding to basins rendered as
orange polygons, respectively (Fig. 1a). The water year 1985
is chosen as a starting point as most of the SNOTEL and
streamflow observations are continuously available thereafter
until 2020. A similar set of years are maintained across each
SNOTEL station and corresponding USGS stream gauge to
preserve the analysis between SWE and AMJJ-V. The mean
annual ratio of 1 April SWE, used here as a proxy for peak
SWE (Pagano et al. 2004), to water-year to date cumulative
precipitation (SWE/P) is calculated over the water years
1985–2020 (Fig. 1a; continuous precipitation measurements
are available at most SNOTEL sites starting from the water
year 1985) to ensure and incorporate varying snowpack char-
acteristics across the western United States. A weaker corre-
lation is observed between the SWE/P ratio and elevation at
SNOTEL sites, which broadly states that the SWE/P ratio
usually increases with elevation (Fig. 1b). It should be noted
that a few SNOTEL sites demonstrate inconsistency in the rela-
tionship between the snow and precipitation, that is, SWE/P. 1,
which is due to windy conditions that cause the precipitation
gauges to undercatch precipitation and propagate snowdrifts on
the measuring snow pillow (Meyer et al. 2012).

For the case study, daily SWE and accumulated precipitation
were obtained from SNOTEL, whereas the natural streamflow
estimates from the U.S. Bureau of Reclamation (Bureau of Rec-
lamation, accessed February 2022, https://www.usbr.gov/lc/region/
g4000/NaturalFlow/). Due to data availability, we constrained our
analysis in the case study from 1986 to 2019WY.
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SCREENING PROCEDURE

A diverse set of SWE observation sites and their corre-
sponding drainage basins were selected across the western
United States, exhibiting a range of hydroclimatological char-
acteristics and different snow regimes (maritime, continental,
and intermountain; Trujillo and Molotch 2014). The following
screening procedure was followed to identify basins and snow
observations suitable for this analysis:

1) Drainage basin areas were constrained between 350 and
2500 km2 in size to avoid major over/underrepresentation
of basinwide snowpack on streamflow.

2) Drainage basins required at least one SWE station inside
the basin boundary or within a 10-km radius for a proxi-
mal representation of basinwide snowpack conditions and
to serve as a predictor in the statistical model.

3) At least 30 years of SWE and streamflow observations
available to support the model training and evaluation.

4) Drainage basins were required to fall within snow-
dominated ecoregions (i.e., North American terrestrial level
III ecoregions; Barnhart et al. 2016; Wiken et al. 2011) with
exceptions to a few basins in Nevada, Arizona, and New
Mexico that receive less snowfall in general (Fig. 1a). The
basins in these ecoregions have appreciable snow accumula-
tion and they generate snowmelt-driven runoff for down-
stream communities (Bales et al. 2006).

5) A requirement of minimal anthropogenic influence on
streamflow observations from upstream reservoirs, im-
poundments, and other man-made structures in order for
observations to represent a clear connection between snow-
melt and streamflow. The identification of such basins was
performed by analyzing the geospatial attributes from USGS
Geospatial Attributes of Gauges for Evaluating Streamflow
(GAGES II; Falcone 2011; Falcone et al. 2010) and Hydro-
Climatic Data Network (HCDN; Slack and Landwehr 1992)
datasets, which otherwise also recognizes the gauges provid-
ing natural streamflow observations.

For the case study, nine large UCRB basins with areas
greater than 4000 km2 (up to 21000 km2) were identified based
on their availability in U.S. Bureau of Reclamation records and
being present in the GAGES II dataset. These basins are usu-
ally regulated with reservoirs or interbasin transfers, and esti-
mation of natural flows is performed by using observed
streamflow data and removing the human impacts such as ef-
fects of irrigation withdrawals or reservoir operations (Bureau
of Reclamation, accessed February 2022, https://www.usbr.gov/
lc/region/g4000/NaturalFlow/). SNOTEL stations, inside the ba-
sin boundary or within a 10-km radius, with continuous data
availability of SWE and accumulated precipitation for at least
30 years were selected for consistency.

3. Results

a. Comparison of forecast skill on 1 April

The model residuals when trained on below-median (selec-
tive) and nondrought (conventional) years are shown for all
SNOTEL sites in Fig. 6. Both models show overprediction in

drought years. However, consistent with our expectation, the
model overprediction is less (smaller residuals, Fig. 6b) with
training on below-median years as compared to nondrought
years (Fig. 6a). This is evident from NRMSE shown for all
SNOTEL sites where overall mean NRMSE dropped, for
sites greater than SWE/P of 0.5, by 10% for below-median
years (Fig. 6b). This is a consequence of differences in training
approaches where, in general, the model slopes are relatively
lower for below-median years and similar to the slope in with-
held drought years (drought slope) as compared to non-
drought years (Figs. 4b and 6c). We observe a general pattern
of decreasing model residuals with an increasing SWE/P in
both cases, likely due to a greater influence of snowpack on
the relationship between snowpack and streamflow.

With nondrought years in training (Fig. 6a), the conven-
tional forecasts show a high degree of variation in residuals
across the zero residual line, signaling neither consistent over-
prediction nor underprediction of AMJJ-V. On the contrary,
smaller magnitude and more consistently negative residuals
are obtained with the selective forecasts, indicating a system-
atic overprediction of AMJJ-V. Due to lower SWE values in
drought years, high residual errors (.100%) are also ob-
served at a few SNOTEL sites for both training subsets. The
regression statistics, including slope, intercept, R2, and resid-
ual standard error, are reported in supplemental Table S1 in
the online supplemental material for all SNOTEL sites.

The impact of different training subsets on 1 April forecast
skill during drought and nondrought years is examined fur-
ther and shown in Fig. 7. Similar to the above-described be-
havior of model residuals, higher forecast skill is obtained in
drought years when the model is trained on below-median
years (selective), relative to nondrought years (conventional)
(Fig. 7a). A consistent gain in skill is observed across all cate-
gories of the SWE/P ratio, with a maximum of 20% overall
for the SWE/P 0.50–0.75 category. Roughly 74% of locations
show better overall performance relative to nondrought train-
ing years (Fig. 7b) due to improved fitting of model slopes
and lower residuals. Contrary to forecast skill in drought
years, we observe the opposite skill pattern in nondrought
years (Figs. 7c,d), indicating a trade-off, reduced skill when
training on below-median years (underfit) relative to non-
drought years (overfit). The drier set of training years lack
sampling of nondrought years, and therefore the model can-
not reliably capture the relationship between snowpack and
streamflow, resulting in high bias. Spatially, streamflow fore-
casts are considerably more skillful in maritime and inter-
mountain regions (California, Montana, and Idaho) than the
continental regions (Colorado and Utah) with below-median
years, as shown in Fig. 7b. We remind the reader that the case
described above is overly conservative since it assumes that
drought years have never occurred before and are not in-
cluded in the training. However, in a separate experiment,
we also find that by including the withheld drought years in
training, the gains in forecast skill with below-median years
are comparable, albeit slightly better than the above case
(Fig. S1).

We further investigate the potential for alternative training
subsets to improve skill in drought years. Figure 8a shows the
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change in NRMSE for different training subsets relative to
nondrought training years across the study domain, with the
biggest gains for the driest (P15, P47.5] and losses for the least
dry (P30, P62.5] training subset, respectively. The two driest
training subsets (P15, P47.5] and (P20, P52.5] show significantly
better skill (p value # 0.05) than nondrought training years
(P15, P100] based on a one-sided Wilcoxon signed-rank test.
Furthermore, roughly 82% of locations showed better overall
performance for the driest training subset relative to non-
drought years (not shown). We also assess the change in fore-
cast skill across the SWE/P ratio categories and similarly
observe consistent gains and lowest uncertainty for the driest
training subset (Fig. 8b).

b. Comparison of forecast skill across the forecast season

Given the interest in water supply predictions throughout
the forecasting season (January–May), we assess the impact of
different training subsets on the daily forecast skill for each
forecast experiment. This comparison is shown for 29 stations
with SWE/P ranging from 0.75 to 1.00, representing the largest
group of SNOTEL stations and those with high contributions

of snowmelt to AMJJ-V. Forecast skill is evaluated for drought
(Fig. 9a) and nondrought (Fig. 9b) years for a continuous set of
forecast dates spanning from 1 January to 15 May. As shown in
Fig. 9a, significant error reductions ranging up to 40% are ob-
tained early in the season (January–February) for below-
median years (selective) as compared to nondrought years
(conventional). On the contrary, poor performance is observed
for below-median years (underfit) relative to nondrought years
(overfit) resulting from the lack of information in the context
of nondrought years (Fig. 9b). We also identify the calendar
dates corresponding to the lowest median NRMSE and find
better overall performance after 1 April for all forecast experi-
ments. This is because these stations are mostly in colder
regions like Colorado, Utah, Montana, and Wyoming that,
on average, receive snow until mid- to late April and tend to
provide robust skill around peak SWE. Similar comparisons
are also performed for two other SWE/P ratio categories
(0.50–0.75; 1.00–1.25) in drought years and are included in the
supplemental material (Fig. S2), showing similar, consistent
gains in forecast skill with below-median years. Due to reduced
snowmelt contribution to runoff, higher uncertainty and poor

FIG. 6. (a) Model residuals and (b) NRMSE (%) shown for all SNOTEL sites for selective and conventional fore-
cast experiments in withheld drought years, and (c) training model slopes from Conventional and Selective forecast
experiments compared to the slope in withheld drought years. Residuals in (a) are expressed as a median percentage
of the observed AMJJ-V from withheld drought years. All model slopes in (c) are estimated based on a linear fit be-
tween SWE and AMJJ-V.
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performance is observed across the forecast season for low
SWE/P categories (,0.5). The use of snow as a sole predictor
in these cases is likely to become problematic, particularly in
low snow and drought years, hence we focus our presentation
on results for SWE/P. 0.5 categories.

c. Case study: Comparison of forecast skill in
large basins

We compare the forecast skill from the conventional and
selective forecasts, using a modified NRCS’s PCR procedure
(CV PCR), for nine large UCRB basins to understand the de-
gree of influence of snowpack–streamflow relationship on
streamflow generation, particularly in drought years. Prior to
our implementation of CV PCR-based forecast experiments,
we compare the leave-one-out errors from NRCS PCR and
CV PCR and observe similar performance when each are
trained on the period of record (Fig. S5). We also find similar
performance when training CV PCR on nondrought years
(conventional). However, when training on below-median
years (selective), large leave-one-out errors at longer lead
times (i.e., in January and February) are observed, perhaps at-
tributable to smaller sample sizes (i.e., [P15, P57.5] years) and
in turn, a larger impact of outliers (Fig. S5). Figure 10a shows
the model residuals in withheld drought years for the

conventional and selective PCR-based forecasts across differ-
ent lead times. Commensurate with our earlier findings, we
see overprediction in drought years (Fig. 10a, upper subplots)
and generally smaller model residuals with selective forecast
as compared to conventional forecasts for most basins and
across most lead times (see, the NRMSE estimates in
Fig. 10a, lower subplots). The performance of conventional
and selective forecasts in withheld drought years can be
largely explained by the similarity of model slopes, that is, the
slope between AMJJ streamflow and SWE, with respect to
the slope in the withheld drought years (Fig. 10b). This under-
scores the importance of the snowpack–streamflow relation-
ship even across larger basins that can aid in improving the
understanding of snow-based streamflow predictability.

d. Improved forecast skill in drought years with
adaptive sampling

We evaluate an adaptive sampling application that dynami-
cally selects training years based on the SWE percentile at
every forecast date. We compare the adaptively sampled fore-
cast skill against two alternative training subsets, one using no
assumption of a climate state, that is, uses the period of re-
cord, excluding the forecast year, and one that trains a dry cli-
mate state using below-median years. As shown in Fig. 11a,

FIG. 7. (a) Forecast skill (NRMSE) evaluated in drought years from the conventional and selective forecast experiments and (b) fore-
cast skill evaluated in nondrought years from the overfit and underfit forecast experiments over the range of SWE/P. (c) Change in
NRMSE (%) between the conventional and selective forecast experiments and (d) change in NRMSE between the overfit and underfit
forecast experiments across the selected SNOTEL stations. The boxplots in (a) and (c) represent a 90% confidence interval and the curly
braces (on the x axis) indicate the number of SNOTEL stations in each SWE/P ratio category.
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below-median and adaptively sampled years show skillful
forecast in drought years when compared to a model trained
on the period of record for stations with SWE/P ranging from
0.75 to 1. Consistent error reductions of up to 40%, particu-
larly early in the season, are observed for both, with the
largest in below-median years. This is because training on
below-median years is geared solely toward drought, whereas,
in the case of adaptive sampling, the years are dynamically se-
lected based on antecedent SWE conditions. However, this
drought assumption faces considerable uncertainty year-to-
year and at longer lead times (Hao et al. 2018), illustrated in
Fig. 11c where an incorrect assumption of drought in wet
years [P85, P100] can lead to significant forecast errors through-
out the forecast season. This is not an issue with adaptively
sampled years that rely on antecedent SWE conditions for its
assumption of the climate state. Despite moderate error reduc-
tions of up to 20% earlier in the season, the skill from adap-
tively sampled years improves throughout the forecast season
in drought years and indeed slightly outperforms the below-
median years later in the season (Fig. 11a). With adaptive
sampling, a trade-off is seen in “normal years” (Fig. 11b)
likely due to training the model on a narrower range of
years}spanning only 20 percentile points}relative to train-
ing the model on the period of record, which spans nearly
100 percentile points.

This skill improvement of adaptive sampling in drought
and wet years is attributable to the evolving relationships and
moderate narrowing of SWE and AMJJ-V conditions throughout
the forecast season. An example of forecast skill and the
time-evolving relationships is shown in Figs. 12a and 12d for
drought and Figs. 12c and 12f for wet years at one SNOTEL
station. Drawbacks in adaptive sampling can be seen in nor-
mal years [P42.5, P57.5] (Fig. 12b) where it underperforms,

in particular, early in the forecast season when the spread
among SWE conditions is greatest, becoming narrower by
1 April (Fig. 12e).

4. Discussion

A retrospective analysis was conducted to investigate the
snowpack–streamflow relationship and its impact on water
supply forecast skill under imposed nonstationary scenarios.
This work was motivated by reduced snow-based streamflow
predictability in drought years owing to the change in snow-
pack conditions and lowered runoff efficiency. This analysis
into historic forecast skill and training approaches sought to
quantify the reliability of snow-based streamflow predictabil-
ity in the most sensitive management periods, that is, during
drought.

Streamflow was overpredicted during drought years, but
we found smaller residuals when the model was trained on
below-median years as compared to all nondrought years
(Fig. 6). Model residuals from training on nondrought years
pose high variability across the zero residual line and is the
manifestation of the increased 1 April SWE variability in
drought years. The distribution of 1 April SWE indicated
higher variability in drought years relative to nondrought
years, as evident from the CMAD measures (Fig. S3). This is
particularly important for cooler continental regions across
the western United States where snowfall accumulation vari-
ability has been projected to increase toward the end of the
twenty-first century (Lute et al. 2015).

Smaller model slopes (shown for a representative site in
Fig. 4b) were consistently seen when training the forecast
model on below-median years, leading to consistent negative
residuals. In these cases, less snow meltwater was reaching
the stream gauge, instead contributing more to soil moisture

FIG. 8. (a) Change in NRMSE (%) evaluated in drought years across the entire study domain between four differ-
ent sets of training years and nondrought years (P15, P100] and (b) as in (a), but binned by SWE/P. The median is
plotted as solid lines and the interquartile range as a color ribbon. The curly braces in (b) indicate the number of
SNOTEL stations in each SWE/P category.
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recharge and evapotranspiration losses to the atmosphere.
This lowered runoff efficiency (e.g., Livneh and Badger 2020;
Nowak et al. 2012; Woodhouse et al. 2016) means that a
model with a lower slope would provide better predictions in
drought years due to similarity in slopes between training and
evaluation years. However, drawbacks with below-median
years can occur, in particular at sites with lower SWE/P in
drought years (Fig. 6). Importantly, predictions during ex-
treme drought years, that is, when SWE = 0, solely rely on the
model intercepts [see Eq. (1)]. In the case of flatter slopes
produced from training on either below-median or non-
drought years, these model intercepts sometimes exceed the
median of observed streamflow from drought years. This
leads to high residual errors, even exceeding 100%, particu-
larly for locations with low SWE/P and where the frequency
of zero peak SWE is projected to become increasingly com-
mon toward the end of the twenty-first century (Lute et al.
2015; Livneh and Badger 2020). Similar behavior is observed
for model residuals at basin-scale that uses the NRCS ap-
proach of averaging SWE from SNOTEL sites within and
adjacent to the basin (Fig. S4a). This is evident from the
NRMSE shown for all basins where overall mean NRMSE
dropped by 4% for below-median years (Fig. S4b). The re-
gression statistics, including slope, intercept, R2, and residual

standard error, are reported in supplemental Table S2 for all
basins.

Consistent with the above, we observed improvements in
seasonal forecast skill derived from 1 April SWE in drought
years when training on below-median years. We found that
the seasonal forecast skill improved overall at 74% of selected
SNOTEL sites with below-median years as compared to non-
drought years (Fig. 7). An improvement in skill is further
shown with an even drier training subset (P15, P47.5] where
82% of SNOTEL sites perform better (Fig. 8). Overall, these
results confirm that forecast skill in drought years can be
mitigated by selectively training on a subset of years with
drier conditions as compared to using nondrought years. The
implications of below-median years in training are examined
further across the forecast season, where the biggest improve-
ments are seen early in the forecast season (January–February),
becoming more comparable later in the season (March–April)
relative to training on nondrought years (Fig. 9). This feature
could be useful for agricultural, municipal, and industrial sec-
tors that rely on the early season forecast for water transfers
and availability estimates. Best predictions are seen after
1 April from all forecast experiments across the stations in
colder regions (high SWE/P), hinting toward the potential
drawbacks of using 1 April as a proxy to peak SWE (Fig. 9).

FIG. 9. Forecast skill (NRMSE) during (a) drought and (b) nondrought years across stations with SWE/P ranging
from 0.75 to 1.00 from the four forecast experiments. The color ribbons represent the interquartile range with a black
line denoting 1 Apr. The colored lines (red and blue) indicate the calendar date corresponding to the lowest median
NRMSE for the four forecast experiments (conventional}29 Apr; selective}7 Apr; overfit}18 Apr; underfit}
29 Apr).
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However, with reductions in future snow, the utility of an
earlier date like 1 March has been evaluated and shown to
perform better toward the end of the century than 1 April
(Livneh and Badger 2020).

This forecast experiments in small headwater catchments
carries several key limitations. Perhaps most notable is the
use of snow as the sole predictor and relying on a simple lin-
ear regression approach. We fit a linear model between SWE

and AMJJ-V due to its easy interpretation and associated ret-
rospective performance, but such a model clearly neglects the
representation of many critical surface processes. Presumably,
using additional nonsnow predictors (Koster et al. 2010; Lehner
et al. 2017) and more sophisticated forecasting techniques
(Sharma and Machiwal 2021) could boost the skill levels
achieved. Another limitation is the use of a one-to-one SWE-
AMJJ-V relationship throughout the study that captures unique

FIG. 10. (a) Model residuals in withheld drought years for the nine large UCRB basins from selective and conventional forecasts.
(b) Training model slopes from conventional and selective forecast experiments compared to slopes in withheld drought years. Residuals
in (a) are expressed as a median percentage of the observed AMJJ-V from withheld drought years. All model slopes in (b) are estimated
based on a linear fit between SWE and AMJJ-V. The halo text in the spatial map within each basin represents the drainage area in units
of km2.
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relationships between snowpack evolution and water supply.
To evaluate the impact of using one-to-one relationships, we
repeated our analysis following the NRCS’s approach that
combines SWE from all sites within and adjacent to the basin
and generally observed a similar skill behavior. Despite this,
using single or multiple SNOTEL stations still lacks the spatial
representativeness of snow conditions across the entire basin.
SNOTEL placement, often within local areas of relatively
higher snow accumulation regions (Broxton et al. 2019), may
not serve as the best proxy for basinwide snowpack conditions
overall. We constrained our analysis to those stations with
at least 30 years of SWE and AMJJ-V observations, but we
acknowledge the limitations in our relatively short historical
period.

We attempt to resolve some of the above limitations by in-
corporating an approach similar in complexity to the NRCS
forecasting approach in a separate case study. The impact of
different training approaches on forecast performance can be
largely reconciled by the characteristics of the snowpack–
streamflow relationship (Figs. 6 and 7). However, this rela-
tionship does not directly account for impacts like longer
lag times, spatial heterogeneity, anthropogenic disturban-
ces, as well as meteorological factors (temperature, wind,

humidity, etc.) and physical characteristics (land use, soil
type, vegetation, etc.) on streamflow generation in the large
basins. Through using larger basins and a different regres-
sion approach in our case study (similar to NRCS’s PCR
procedure), we confirm that the performance of conven-
tional and selective experiments is closely associated with
similarity of SWE–streamflow slopes between training and
evaluation years (Fig. 10). These slopes are reflective of
changing runoff efficiencies between drought and nondrought
years.

Nevertheless, an important caveat with these improvements
in drought years is they rely on a priori knowledge of a year
being in drought or not, which would not be available in a
true forecast. Although there have been developments in
drought prediction techniques, the anticipation of drought in
any forecast year still poses challenges, especially for longer
lead times (∼3–6 months), due to the inherent unpredictable
variability in the atmosphere as well as complex interactions
between natural and anthropogenic factors that combine to
limit anticipation of future droughts (Hao et al. 2018). In this
context, we proposed an adaptive sampling application that
dynamically selects training years based on antecedent SWE
conditions. We evaluated forecast skill using adaptively sam-
pled training sets relative to training on the entire period of
record or using only below-median years. Both the adaptively
sampled and below-median training subsets perform better
than the period of record in drought and wet years attribut-
able to synchronous relationships between SWE and AMJJ-V
(Fig. 11). We believe our exposition into adaptive sampling to
be novel mainly in its climatological stratification using initial
hydrologic conditions (i.e., antecedent SWE) and its applica-
tion within a statistical framework. There have been applica-
tions analogous to “adaptive sampling” in the streamflow
forecasting literature. For example, conditioning the climatol-
ogy in an ensemble streamflow prediction (ESP) framework
with either precipitation or climate indices (Hamlet and
Lettenmaier 1999; Werner et al. 2004) or via the selection of
hydrologic model parameters based on the climate state (Hay
et al. 2009). Regardless, flow-based climatological stratifica-
tion dependent on the initial hydrologic state within a statis-
tical framework has not been explored yet in a publication
to our knowledge. Limitations of adaptive sampling are
highlighted in the case of normal years due primarily to the
wide spread in SWE conditions relative to AMJJ-V, particu-
larly for forecasts issued early in the forecast season, that is,
January and February (Fig. 12), perhaps attributable to
training on narrower range of years. The adaptive sampling
application is built on a simple model structure and a single
predictor that guides a climate state in a given forecast year.
Exploring the value of this application with ancillary predic-
tive information from nonsnow predictors like soil moisture
and climate indices could provide future opportunities for
improved predictions from statistical WSFs. Overall, this
work demonstrated that better streamflow predictions with
alternate model fitting protocols may offer a useful perspec-
tive for decision-makers to consider in snow-based forecast-
ing approaches.

FIG. 11. Forecast skill on the first day of the month for three differ-
ent training subsets across stations with SWE/P ranging from 0.75 to
1.00 in (a) drought years [P0, P15], (b) normal years [P42.5, P57.5], and
(c) wet years [P85, P100]. The three training subsets include the period
of record, below-median years, and adaptively sampled years. The
boxplots represent a 90% confidence interval. Note: the vertical axis
range differs for each panel.
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5. Conclusions

We analyzed the skill of seasonal streamflow volume pre-
dictions in historical drought years across the western United
States and evaluated the impact of different training years on
drought forecast skill via designed forecast experiments in
small headwater catchments as well as in nine large UCRB
basins. The bulk of our analysis withheld severe drought years
from the training period, as a way to evaluate the prediction
of “unprecedented drought,” through a kind of imposed non-
stationarity. Our analysis showed that predictability in with-
held drought years could be improved by excluding wet years
(or above-median years) from the training period. For exam-
ple, in small headwater catchments, the exclusion of wet years
from training period led to forecasts issued on 1 April that
showed an overall decrease of 10% in model residuals relative
to those forecasts trained on all historical years. This type of

improvement was seen in roughly 74% of locations, mostly in
colder maritime and intercontinental regions. The best predic-
tions were generally obtained in mid- to late April for the ma-
jority of stations, in particular for colder regions. Through our
case study over large UCRB basins, we further confirm the
importance of the fundamental snowpack–streamflow rela-
tionship on streamflow predictability using training protocols
more consistent with operations.

We also developed and presented an adaptive sampling ap-
plication that used the percentile of antecedent SWE condi-
tions on each day of the forecast season to select a set of
training years. The adaptively sampled training years pro-
duced more skillful forecasts throughout the forecast season
in drought years as compared to training on the period of re-
cord that poses no assumption of a climate state. Improve-
ments in forecast skill of up to 20% were seen, particularly in

FIG. 12. (a)–(c) Forecast skill (NRMSE) on the first day of each month and (d)–(f) associated SWE (lines) and
AMJJ-V (solid circles) percentiles for drought years [P0, P15], normal years [P47.5, P57.5], and wet years [P85, P100], re-
spectively. Representation of forecast skill and SWE-AMJJ-V relationship is based on single SNOTEL station 601
(Lost-wood Divide, ID) and its corresponding USGS stream gauge 13120000 (NF Big Lost River at Wild Horse Nr
Chilly, ID). Note the vertical axis ranges differ by the panel.
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drought and extremely wet years, due to the strong coupling
between SWE and AMJJ-V conditions earlier in the forecast
season. However, these variables were not as tightly coupled
when conditions were near the median. The result was that
adaptively sampled forecasts performed poorer than those
trained on the period of record during “normal years,”
suggesting that the span of 20 percentile points in adaptive
sampling training being too narrow to reflect the snowpack–
streamflow relationship during near-median conditions. Over-
all, the alternate training protocols presented here have the
potential to improve the reliability of snow-based forecasting
approaches, providing opportunities for addressing the chal-
lenges during drought years where water supply information
is critical.
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